ROBOSUB – TEAM 4

Requirements and Needs Analysis October 2014

Dennis Boyd

- Lead Programmer, Web designer
 - Primary programmer
 - Develop and maintain the webpage

Bjorn Campbell

- Treasurer, Electrical systems
 - Responsible for money
 - Acquisition of parts
 - Power and heat distribution in the sub
 - Circuit design

Samantha Cherbonneau

- Programmer, Secretary
 - Documents group minutes
 - Manages and finalizes documents
 - Responsible for writing code allocated by lead programmer

Kevin Matungwa

- Programmer, Vice Team Leader
 - Assumes team leader responsibilities when required
 - Responsible for writing code allocated by lead programmer

Elliot Mudrick

- Team leader, Programmer, Web designer
 - Responsible for timelines
 - Team coordination
 - Programming tasks assigned by lead programmer
 - Develop and maintain the webpage

Overview of the RoboSub Competition

 Association for Unmanned Vehicle Systems International (AUVSI)

Overview of the Current RoboSub

Required Capabilities

- Run autonomously
- Pass through the validation gate
- Follow a path of orange line segments that guide the sub between tasks

Desired Capabilities

- Movement & Color Recognition
 - Bump a buoy until on proper LED color
 - Maneuver around/over PCV based on color and location of risers

Desired Capabilities

- Gripping, Shape & Color Recognition
 - Drop marker in a bin with primary alien target, another in a bin with secondary alien target
 - Grab colored objects and deliver to box
 - Remove power pins and then place back

Desired Capabilities

Precision

- Fire a torpedo through a small hole in a target
- Surface inside octagon based on acoustic pinger placement

Functional Requirements

- Path
- Control Panel Buoy
- Maneuvering
- Landing Site
- Brunch
- Reroute Power
- Recovery Area
- Interference
- Acoustics

Path

- Consists of Line Segments
- Made of Aluminum Sheets
 - 6" wide by 4'long
 - Raised off the floor 1'-2'
 - Blaze Orange Duke tape
- Line Segments are like Arrows
- Start at the Control Panel
 - Maneuvering area
 - Landing Site/Brunch
 - 2 Different paths
 - One points to Reroute Power
 - One Points to Recovery area

Control Panel To Next Task Top View 3 ft (0.91m) 3 Moored Buoys RED/GREEN/BLUE (RGB) buoy Front View 4" diameter and 15" long 6" (15cm) • RED buoy 3 ft 9" (23cm) (0.91 m) dia • 9" diameter GREEN Buoy 4 ft 6 ft 4 ft • 9" diameter (1.8 m) (1.2 m) (1.2 m) Floor

- RGB buoy Cycles through Red and Green every 5 seconds
 - Most points received by turning the RGB buoy Green
 - Points awarded for touching the Red then the Green Buoy

Maneuvering

Platform

- 6' long 2" diameter PVC Pipe
- 1' Raisers on the Sides
- 4' long 2" diameter PVC pipe Center A
- 2 Different ways to Navigate
 - First move your sub between a side ledge and the Center
 OR
 - Circumnavigate around the center PVC

(drawing not to scale)

Landing Site / Brunch

Landing Site

- BLACK bins surrounded by a white border.
- Drop Markers into the Primary Bin
- Primary Bin determined by an Alien silhouette.

- Brunch
 - Single Square Green Board
 - Spacecraft in the center
 - Above the Spacecraft are 4X5" holes with 7" black borders
 - Below the Spacecraft are 2X10" holes with 12" black borders

Reroute Power

- 8 Blue circles arranged on a 36" yellow square
- 4 Red Power Pins
- Remove 1 Red Power Pin and place the Power Pin in an unoccupied blue circle

Recovery

- Two different Recovery Areas
- Directly above Acoustic pinger will determine the location of the Sample Box
- Recovery Area is an Octagon of ½" PVC pipe in a "diameter" of 9 ft
- Travel to Collection Site by Path line
- Remove mars rocks/cheese from the Collection Site and place them in the Sample Box.

Interference / Acoustic Pinger

- Interference
 - The AUV will not interfere with course components otherwise disqualification can occur.
- Acoustic Pinger:
 - Teledyne Benthos ALP-365 pingers
 - They can be set from 25-40 kHz in 0.5 kHz increments.

Non-Functional Competition Requirements

Journal Paper

- 10 Pages describing the rationale behind the design.
- Video introducing the team, the sub, and strategies for the competition
- Resumes
 - Zipped to the Journal Paper.
 - Encouraged by AUVSI
 - Benefit to the Competitors

Constraints

- Based on the 2014 Competition
- Will be different this year (hopefully similar)
- Set ground rules for what sub can compete
- Will dictate how certain components and systems may be designed

Dennis Boyd

Weight Constraints

 The below table will determine the weight requirements of the AUV:

Table 1: Size and weight constraints on AUVs entered into the competition.											
	Bonus	Penalty									
AUV Weight > 125 lbs (AUV Weight > 56.7 kg)	N/A	Disqualified!!!									
125 lbs ≥ AUV Weight > 84 (56.7 kg ≥ AUV Weight > 38 kg)	N/A	Loss of 250 + 5(lb - 125) 250 + 11(kg - 56.7)									
84 lbs ≥ AUV Weight > 48.5 (38 kg ≥ AUV Weight > 22 kg)	Bonus of 2(84 – lb) 4.4(38-kg)	N/A									
AUV Weight ≤ 48.5 lbs (AUV Weight ≤ 22 kg)	Bonus of 80 + (48.5 – lb) 80 + 2.2(22-kg)	N/A									

• Required: <= 125 pounds

Basic Constraints

- Only one vehicle per team.
- Judges may disqualify a vehicle for unreasonable safety hazards.
- Vehicles must operate autonomously.
- All vehicles are battery powered. All batteries must be sealed. Maximum DCV will not exceed 60 V for the batteries or battery systems.
 - Significant restraint for computer, controllers, motors, etc.

Marker & Torpedo Constraints

- Each marker must fit within a box 2.0" square and 6" long.
 - Each must weigh less than 2.0 lbs.
 - Each marker must bear the team name or an emblem.
- Torpedoes must not be loaded in team tents.
- The torpedoes size, weight, markings are identical to the Markers.
 - The torpedoes must travel at a "safe" speed.

Kill Switch Constraint

- All vehicles must have a kill switch that a diver can readily activate.
- All vehicles must be buoyant by at least 0.5% of their mass when they have been shut off through the kill switch.
 - Important design requirement

Additional Safety Constraints

- Judges will disqualify any vehicle that poses an unreasonable risk to the integrity of the host facility.
- No materials (except for the markers/torpedoes and compressed air used to blow ballast) may be released by the vehicle into the waters of the arena.
- For the safety of your vehicle, we require it to be slung on a harness or sling of some type.

Capabilities Test Plan

Path

Test by placing orange tape marker in the pool

Control Panel

Use LED lights to ensure the sub recognizes the buoy

Maneuvering

 Build test gate and ensure robot can maneuver successfully

Capabilities Test Plan

Landing Site

 Build 2 boxes and ensure the sub can drop markers in each accordingly (primary and secondary)

Brunch

Ensure sub can fire torpedoes through an open hole using the camera vision

Reroute Power

 Construct a board with two circles and verify robot can grab and remove pin, and preferably return to same circle

Recovery Area

- Construct following Mars Rock and Green Cheese and ensure the robot can do the following
 - Recognize and follow an acoustic pinger
 - Grab the rock and cheese within 3 degrees of freedom
 - Follow orange tape to collection site when guided by pinger
 - Carry rocks or cheese and release at top

Constraints Test Plan

Sub, Markers, and Torpedoes Weights

 Separately measure dry weight of sub, markers, and torpedoes on a scale to ensure less than 125 lbs, 2 lbs, and 2 lbs, respectively

Marker and Torpedo Dimensions

 Use tape measure to ensure markers and torpedoes are within 5.08x5.08x15.24cm box each

Torpedo Travel Speed

 Test torpedoes in pool to ensure they are moving at a safe speed

Kevin Matungwa

Preliminary Budget

- Roughly \$250
- Need to Purchase Immediately
 - Depth Sensor
 - Chargeable Battery
 - Waterproof Seal Around Sub (most likely)
- Desired Purchases
 - Functional Gripper Arm
 - Torpedoes
 - Pinger Sensor
 - Note: Will wait to purchase until we receive formal requirements for competition

Preliminary Schedule

	Task Name	Start Date	End Date	Predecesso	Sep 21							Sep 28									(
				rs		М							М							М	
1	Preliminary tasks	09/25/14	10/10/14																		
2	Test waterproof seal	10/04/14	10/04/14																Tes	t wa	aterpr
3	Replace depth sensor	09/25/14	10/09/14																		
4	Test existing code	10/10/14	10/10/14	2, 3																	
5	Line Following	10/13/14	10/30/14																		
6	Begin coding	10/13/14	10/20/14	4																	
7	First test	10/21/14	10/24/14	6																	
8	Second test	10/27/14	10/29/14	/29/14 7																	
9	Line following implemented	10/30/14	10/30/14																		
10	Color recognition	10/13/14	10/30/14																		
11	Begin coding	10/13/14	10/20/14	4																	
12	First test	10/21/14	10/24/14 11																		
13	Second test	10/27/14	10/29/14	12																	
14	Color recognition implemented	10/30/14	10/30/14	13																	
15	Red/Green PVC Maneuverability Task	10/31/14	12/10/14																		
16	First test	10/31/14	11/07/14	9, 14																	
17	Second test	11/10/14	11/17/14	16																	
18	Third Test	11/18/14	11/25/14	17																	
19	Maneuverability Finalized	11/26/14	12/10/14	18																	
20	Buoy Task	10/31/14	12/10/14																		
21	First test	10/31/14	11/07/14	9, 14																	
22	Second test	11/10/14	11/17/14	21																	
23	Third Test	11/18/14	11/25/14	22																	
24	Buoy Finalized	11/26/14	12/10/14	2/10/14 23																	

Preliminary Schedule

Preliminary Schedule

	Nov 23									Ν	lov 3	0		Dec 7							
s		М		W					М							М					
																			Red	d/Gre	en
				Thi	rd Te	est															
																		Ма	neuv	era	
																			Bud	у Та	sk
				Thi	rd Te	est															
				+															Buc	by Fi	nali

Preliminary Risk Assessment

- Risks to Sub
 - Water damage
 - Overheating
 - Dry rot
 - Shatter/Crack if pressure is too high
- Risk to Persons
 - Exposed wires in water could lead to electrocution
 - Drowning during testing

